Direct patterning of mammalian cells onto porous tissue engineering substrates using agarose stamps.

نویسندگان

  • Molly M Stevens
  • Michael Mayer
  • Daniel G Anderson
  • Douglas B Weibel
  • George M Whitesides
  • Robert Langer
چکیده

This paper describes simple, inexpensive, and potentially generic methodology for generating patterns of mammalian cells on porous scaffolds for tissue engineering using replica printing. Circular patterns (diameter: 200, 700, and 1000 microm) of human osteoblasts were transferred directly from topographically patterned agarose stamps onto porous hydroxyapatite scaffolds or onto fibronectin-coated glass slides. The use of hydrogel stamps provided a "wet", biocompatible surface and maintained the viability of cells adsorbed on stamps during the patterning process. Stamps inked once with suspensions of cells allowed the repeated patterning of substrates. Direct stamping of human osteoblasts (and, potentially other mammalian cells) can be used to control the size, spacing, and geometry of patterns of cells printed on porous tissue engineering substrates. This approach may find use in controlling the spatial invasion of scaffolds, promoting the hierarchical organization of cells, and in controlling cell-cell interactions as a step in preservation of phenotypes of cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro.

Bacterial cellulose (BC) is a biocompatible hydrogel with a three-dimensional (3-D) structure formed by a dense network of cellulose nanofibers. A limitation of using BC for applications in tissue engineering is that the pore size of the material (∼0.02-10μm) is smaller than the dimensions of mammalian cells and prevents cells from penetrating into the material and growing into 3-D structures t...

متن کامل

Direct imprinting of porous substrates: a rapid and low-cost approach for patterning porous nanomaterials.

This work describes a technique for one-step, direct patterning of porous nanomaterials, including insulators, semiconductors, and metals without the need for intermediate polymer processing or dry etching steps. Our process, which we call "direct imprinting of porous substrates (DIPS)", utilizes reusable stamps with micro- and nanoscale features that are applied directly to a porous material t...

متن کامل

High-precision robotic microcontact printing (R-μCP) utilizing a vision guided selectively compliant articulated robotic arm.

Increased realization of the spatial heterogeneity found within in vivo tissue microenvironments has prompted the desire to engineer similar complexities into in vitro culture substrates. Microcontact printing (μCP) is a versatile technique for engineering such complexities onto cell culture substrates because it permits microscale control of the relative positioning of molecules and cells over...

متن کامل

Micropatterned agarose gels for stamping arrays of proteins and gradients of proteins.

We describe a method for repetitive and rapid formation of planar microarrays and gradients of proteins using patterned agarose stamps. It demonstrates: (i) micropatterning of agarose gels with feature sizes as small as 2 microm; (ii) inking of posts (diameter 50-1000 microm) on patterned agarose stamps with one or multiple (here, eight) proteins and repetitive stamping of patterns (>100 times ...

متن کامل

An alternative method for fabricating microcontact printing stamps

In this paper, we describe the development of microcontact printing stamps from photopatternable silicone. The photopatternability of this material enables convenient and fast stamp fabrication, and allows rapid patterning of substrates for culturing biological cells. Microcontact printing stamps made of the photopatternable silicone with linewidths as small as 2 lm were fabricated and reliable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 26 36  شماره 

صفحات  -

تاریخ انتشار 2005